List of Beneficial Mutations in Humans

From Sciphi

Contents

Beneficial Mutations

Super Strength

Super Strong Bones

Disease Resistance

  • Sickle cell resistance to malaria
    • The sickle cell allele causes the normally round blood cell to have a sickle shape. The effect of this allele depends on whether a person has one or two copies of the allele. It is generally fatal if a person has two copies. If they have one they have sickle shaped blood cells. In general this is an undesirable mutation because the sickle cells are less efficient than normal cells. In areas where malaria is prevalent it turns out to be favorable because people with sickle shaped blood cells are less likely to get malaria from mosquitoes. This is an example where a mutation decreases the normal efficiency of the body (its fitness in one sense) but none-the-less provides a relative advantage.
  • Immunity to HIV
    • HIV infects a number of cell types including T-lymphocytes, macrophages, dendritic cells and neurons. AIDS occurs when lymphocytes, particularly CD4+ T cells are killed off, leaving the patient unable to fight off opportunistic infections. The HIV virus has to attach to molecules that are expressed on the surface of the T-cells. One of these molecules is called CD4 (or CD4 receptor); another is C-C chemokine receptor 5, known variously as CCR5, CCCKR5 and CKR5. Some people carry a mutant allele of the CCR5 gene that results in lack of expression of this protein on the surface of T-cells. Homozygous individuals are resistant to HIV infection and AIDS. The frequency of the mutant allele is quite high in some populations that have never been exposed to AIDS so it seems likely that there was prior selection for this allele.
    • http://www.ncbi.nlm.nih.gov/htbin-post/Omim/dispmim?601373
  • Resistance to atherosclerosis
    • Atherosclerosis is principally a disease of the modern age, one produced by modern diets and modern life-styles. There is a community in Italy near Milan whose residents don't get atherosclerosis because of a fortunate mutation in one of their forebearers. This mutation is particularly interesting because the person who had the original mutation has been identified. Note that this is a mutation that is favorable in modern times because (a) people live longer and (b) people have diets and life-styles that are not like those of our ancestors. In prehistoric times this would not have been a favorable mutation. Even today we cannot be certain that this mutation is reproductively favorable, i.e., that people with this mutation will have more than the average number of descendents. It is clear, however, that the mutation is personally advantageous to the individuals having it.
    • http://atvb.ahajournals.org/cgi/content/full/18/4/562

Enhanced Senses

  • tetrachromacy
    • In humans, two cone cell pigment genes are located on the sex X chromosome, the classical type 2 opsin genes OPN1MW and OPN1MW2. It has been suggested that as women have two different X chromosomes in their cells, some of them could be carrying some variant cone cell pigments, thereby being born as full tetrachromats and having four different simultaneously functioning kinds of cone cells, each type with a specific pattern of responsiveness to different wave lengths of light in the range of the visible spectrum. One study suggested that 2–3% of the world's women might have the kind of fourth cone that lies between the standard red and green cones, giving, theoretically, a significant increase in color differentiation. Another study suggests that as many as 50% of women and 8% of men may have four photopigments.
    • http://en.wikipedia.org/wiki/Tetrachromacy

Other Mutations

True Tails

No Aging

Personal tools