Gamma
From Lmathmatica
(Difference between revisions)
(One intermediate revision not shown) | |||
Line 42: | Line 42: | ||
Or | Or | ||
- | How about [ | + | How about [http://en.wikipedia.org/wiki/Reverse_Polish_notation Postfix notation]? |
ie: *+ab^-xy-cd -> ab+xy-cd-^*:(a+b)*((x-y)^(c-d)) | ie: *+ab^-xy-cd -> ab+xy-cd-^*:(a+b)*((x-y)^(c-d)) |
Current revision as of 18:08, 8 October 2007
Word types
Name | Example | Usage |
Function particle | Cat, eat, death, cos | eat@I = food. like@I = cat |
Constant particle | I, you, that-there | |
Operator | +,-,with,@,^,, | (cos@x)^2+(sin@x)^2:1 |
Set operator | ||
Logical operator | ||
Grammatical particle | x,Q | |
Divider | (,) |
(x+y)*2 (2*y)+x ((a+b)*(x-y))^(c-d) (((((a+b)*x)-y)^c)-d)
- P
^(*(+(a,b),-(x,y)),-(c,d)) as brackets assumed: ^*+a,b,-x,y,-c,d :((a+b)*(x-y))^(c-d)
- +a,b,^-x,y,-c,d :(a+b)*((x-y)^(c-d))
(a+b)*(x-y)^(c-d) a+b*(x-y) Or
How about Postfix notation? ie: *+ab^-xy-cd -> ab+xy-cd-^*:(a+b)*((x-y)^(c-d))