Molecular and Biochemical Genetics
From Iusmgenetics
(Difference between revisions)
Line 59: | Line 59: | ||
====[[Hemochromatosis]]==== | ====[[Hemochromatosis]]==== | ||
+ | |||
+ | |||
+ | ====[[Alpha-1-Anti-Trypsin deficiency]]==== | ||
+ | |||
+ | ====[[Rett Syndrome]]==== | ||
+ | |||
+ | ====[[Lesch-Nyhan syndrome]]==== | ||
+ | |||
+ | ====[[Inherited Muscular Dystrophies]]==== | ||
+ | |||
+ | ====[[Becker Muscular Dystrophy]]==== |
Revision as of 21:21, 13 October 2011
Contents |
Molecular and Biochemical Genetics
Objectives
- Important terms:
- "Incomplete" dominance or "semi-dominant": homozygous individuals have a worse manifestation than heterozygous individuals (achondroplasia).
- "Distinct disorder": consistent clinical and radiological findings.
- Important concepts:
- Types of mutations:
- Missense: changed amino acid
- Nonsense: introduced stop codon
- Neutral / silent: no amino acid change
- Polymorphisms are a population term; it means 1% of the pop has it; it does not infer whether it causes disease or not
- RNA splicing: gain or loss of splice site
- Regulation mutation: affects gene regulation
- Indels: gain or loss of one or more bases; leads to frameshift if not a multiple of 3
- Repeat expansion: repeated segment (usually 3 bases) expands as nucleotide copy / repair mechanisms get hung up
- Haploinsufficiency:
- Dominant-negatie effect:
- Types of mutations:
- For individual diseases, know: clinical features, mode of inheritance, genes involved / gene defect, pathogenesis, treatment (sometimes)
Review your fundamentals
Dominant Diseases
- Dominant disease are defined as those manifested when only one allele is mutated.
- Recall that some diseases can be both dominant and negative because of allelic heterogeneity and locus heterogeneity.
- There are multiple ways we describe a single allele (not both copies) can cause disease:
- Qualitative effects: the protein product gains a function.
- Quantitative effects: the protein product is broken.
- Combination of qualitative and quantitative.
- Others
- It is important to understand the disease pathogenesis in order to think wisely about treatment.
Achondroplasia
Osteogenesis imperfecta
Ehlers Danlos Syndrome
Marfan syndrome
Familial Hypercholesterolemia
Recessive Diseases
- Requires two mutant alleles to show the phenotype or disease state.
- Recall that a proband with a recessive disease usually has parents who are both carriers.
- However, there are exceptions: uniparental disomy, skewed lyonization.
- Recessive disorders usually result from a missing component of a pathway.
- Phenotype usually results from the accumulation of a precursor / metabolite.