
IEIP: an Inter-Enterprise Integration Platform for e-Commerce Based on Web
Service Mediation

Suo Cong
University of Zürich

Switzerland
congsuo@ifi.unizh.ch

Ela Hunt
ETH Zürich
Switzerland

elahunt@inf.ethz.ch

Klaus R. Dittrich
University of Zürich

Switzerland
dittrich@ifi.unizh.ch

Abstract

Cross-platform interoperability of web services makes
it possible to wrap and combine information assets from
heterogeneous systems to create a consolidated applica-
tion. Here we propose a new pragmatic architectural model
using web services as building blocks, to form an inter-
enterprise integration platform for e-commerce. The key
idea is to separate the view of a web service defined by
its provider from the views of this web service employed
by consumers. Based on this principle, we explain the use
of web service mediators which act on behalf of both ser-
vice providers and consumers. We advance the notion of
requester-based views of a web service, which are published
by a mediator and used by service providers to construct
services that suit the consumer. To complement those, we
use customer-oriented global views which express the infor-
mation need of a customer. IEIP architecture improves on
traditional data and enterprise service integration systems.
It achieves the following two goals: a customer can use its
own (private) view to access a number of different web ser-
vices as it is using a global view; and a provider can pro-
vide one view for a service implementation that can be ac-
cessed by different requesters using different global views.
Leveraging this model, we report on a prototype supporting
a European-wide parking services platform that integrates
data and services from a large number of parking providers.

1 Introduction

Electronic applications, such as e-commerce, e-
government, and e-healthcare, are increasingly required to
integrate a variety of autonomous and disparate informa-
tion systems across organizational boundaries [24, 26, 28,
29, 33]. Such systems deliver new value-added services or
improve the quality of existing services. It is noteworthy

that industry is pursuing new integration approaches based
on the convergence of EII and EAI [24]. We believe a web
services-based approach is an optimal candidate platform
able to deliver significant improvements in both data and
application integration. Since the emergence of web ser-
vices, the services themselves and the related technologies
have been embraced quickly by most software vendors and
have gained remarkable success. Consequently, web ser-
vices are increasingly used by industry to share enterprise-
level services for conducting business across the internetus-
ing XML-based lightweight protocols [10, 16, 21, 28, 33].
Furthermore, databases are also expected to be encapsu-
lated as and accessed via web services [23]. We believe
this trend is a significant step towards real world applica-
tions which go beyond traditional data integration systems
which mainly focus on schema mapping/matching and data
exchange but ignore the issue of how enterprise data can
be actually retrieved across heterogeneous information sys-
tems.

We observe rapid growth in both numbers and types of
web services. Within our projects either the industrial part-
ners have already implemented some web services, or they
are planning to do so in order to integrate their systems. Our
contribution is a web services based inter-enterprise integra-
tion platform (IEIP). IEIP is a foundation on which service
providers and requesters can easily cooperate across organi-
zational and geographic boundaries. Our inspiration comes
from the traditional data integration systems [27] that pro-
vide every client with one global view of and unified access
interface to data residing at distributed data sources. Be-
yond the one-view-for-all approach, we introduce the con-
cept of a customer-oriented global view which provides a
private global view for each distinct client. Of course, in
real applications, it is very likely that some clients can share
one global view. By using private global views, both the ser-
vice providers and requesters gain further flexibility to offer
services and consume them.

The paper is organized as follows. In Section 2 we
present a brief survey of enabling technologies and discuss



the standards that underpin our IEIP implementation. The
architecture of the IEIP is presented in Section 3 and an im-
plementation is described in Section 4. Finally, we discuss
our contribution and conclude in Section 5.

2 Overview of IEIP

Applications, Business Processes, Mediated Services

Composition, Orchestration, Choreography

Web Service Interaction Model

Web Services Web Services

WS-Middleware WS-Middleware

Programming

Languages / Platforms

Programming 

Languages / Platforms

Figure 1. IEIP architecture uses WS-
Middleware

The primary goal of IEIP (Inter-Enterprise Integration Plat-
form) is clear and simple: to manage the increasing com-
plexity of a large number of interfaces for both service
providers and requesters. The targets to be managed by an
IEIP are both enterprise data stored in backend databases or
semi-structured storage, and business functionality imple-
mented using different programming languages and running
on different platforms. Traditionally, the first integration ac-
tivity has been implemented by EII, based on data integra-
tion techniques and the second integration activity has been
achieved by EAI, EDI, and middleware such as CORBA and
EJB. Due to the intrinsic and significant heterogeneity of
enterprise information systems, none of the above solutions
can be successful in supporting inter-enterprise integration,
although they are appropriate in intra-enterprise integration.

Our IEIP architecture is shown in Figure 1. Web ser-
vices are the core of inter-enterprise integration, and WS-
Middleware is the component which allows us to flexibly
combine a number of web services via view composition
and asynchronous execution of service requests. In the
following subsections we survey the enabling technologies
supporting this model and focus on the widely used tech-
nologies that underlie the IEIP architecture.

2.1 Building block: web services

The primary strength of Web Services is the internet-
wide interoperability across different programming lan-
guages and platforms. This is achieved by enforcing sim-
ple and flexible standards which allow us to define and dis-
cover services that support loosely-coupled and interoper-
able program-to-program interaction. The service-oriented
interaction paradigm leads to a design strategy in which all
software components and their interfaces could be exposed
and used as a service [9, 12]. We classify the standards
and proposals for web services into two levels: the core
standards which define the minimum essential web service
model and are widely used by current commercial applica-
tions in the real world; and the enhancing standards which
are extensions to the core and are mainly used in research.
The core of the basic web services model consists of two
standards [12, 42, 4]: WSDL (Web Services Description
Language [7]) and SOAP [3]. Currently both are supported
by all major software vendors and widely used by industry.
There are numerous enhancements to the core web services
model, especially to introduce semantics into web service
descriptions. Typical examples include standard specifica-
tions such as OWL-S [30]. However, the use of such en-
hancements could cause severe interoperability problems in
e-commerce applications.

2.2 Web services middleware and wrap-
pers

The term ”Web Services Middleware” is not used con-
sistently. In some contexts, it refers to middleware imple-
mented using web services. Here WS-Middleware refers
to software tools (e.g. Apache Axisws.apache.org/axis)
mediating between the layer of business logic implemented
in general-purpose programming languages (Java, C++/C#,
PHP, Perl) and the layer of standard web services, as shown
in Figure 1. This layer has often been invisible in research
prototypes. However, it is not a trivial component that can
be ignored by real industrial applications. Indeed, it is cru-
cial to the success of internet-wide interoperability among
heterogeneous systems because it determines the develop-
ment strategy of web services.

Although a number of efficient XML processing tools
are available, it is generally not a good idea, at this stage,to
generate complex SOAP messages (e.g. assemble a SOAP
request) and the business documents carried by the message
(e.g. parse an XML document to get the input parameters)
directly in the layer of business logic, because this strategy
results in a bulk of custom code to handle the complexity
of SOAP messages. Furthermore, such custom code can
hardly be reused by different applications. As a result, most
current commercial applications providing or consuming

2



web services have been implemented using general-purpose
languages, and are using web services middleware to trans-
form the web services into relevant programming language-
specific constructs like distributed objects. Based on our
experience in developing web service applications, we ex-
plicitly include web service middleware in the IEIP archi-
tecture not only because many applications nowadays are
using it to provide and consume web services, but also be-
cause we consider it as a layer improving the reusability
of components processing SOAP message or other types of
web service messages in the future. In that way, we obtain
”thinner” applications.

One closely related concept is the Web Service Mediator
(e.g. the mediation service in the WSMF [20]) which is of-
ten defined variously in different contexts. In this paper we
use the term ”Web Service Mediator” to refer to a compo-
nent of the IEIP platform, which is designated to transform
a SOAP request message issued by a requester to a SOAP
request message expected by a provider, and a SOAP re-
sponse message created by a provider to a SOAP response
message expected by a requester.

2.3 Interaction model: messaging

The interaction model of web services is based on mes-
saging. XML-based messages carry business documents
between services and requesters [12, 40, 41, 42, 4]. This
approach achieves internet-wide interoperability and loose
coupling. Its success is largely due to the simplicity of the
open standards for web services, which all software ven-
dors can easily support. SOAP specifies messages using
XML in a structured manner and defines bindings to trans-
port protocols such as HTTP or SMTP [3]. Web services
can be invoked simply by sending XML documents encap-
sulated into SOAP messages. However, such internet-wide
vendor-independent interoperability is still fragile to some
extent in real world applications, because the processing of
SOAP messages can be implemented differently by differ-
ent vendors, especially when heterogeneous web services
middleware is employed to transform SOAP messages into
language-specific constructs.

2.4 Composition, orchestration, and
choreography

In order to support inter-enterprise cooperation, more so-
phisticated interaction models are required to bind web ser-
vices together. Application developers need flexible mech-
anisms to make use of a variety of web services which may
operate in autonomous and heterogeneous environments.
These mechanisms are often referred to as service compo-
sition, orchestration, and choreography [9, 12, 2, 20, 31,
32, 38, 5]. Web services composition refers to combining

a number of web services into one processing entity at a
higher level, to provide some new functionality. Web ser-
vices orchestration and choreography refer to creating an
executable business process by specifying the execution or-
ders of a set of web services.

2.5 Mediated web services: reusable com-
ponents

Web Services Mediator

Web Services Integration Engine

Client1 Client2

GView1 GView2

WS1 WS3WS2 WS4

Figure 2. A web service composed by a WS-
Mediator

Each web service has an interface defined by its provider.
To invoke a web service, requesters need to discover the
interface of this web service and understand its semantics.
When the number of web services increases, the complexity
of discovering and binding to each individual service inter-
face increases significantly [41]. To overcome this problem,
we delegate the management of web service usage complex-
ity to a mediator. As shown in Figure 2, in IEIP each client
has its own private global view which is dynamically cre-
ated by composing and orchestrating the underlying enter-
prise web services into one processing entity. By using a
web service mediator, client applications are released from
handling the complexity of interacting with each individual
web service. And the service providers can also be released
from supporting multiple views used by different clients.

2.6 Dynamic binding

A very significant promise of web service technologies
is to enable a service requester to determine the actual
web service to be invoked at run time [9, 4]. This is re-
ferred to as dynamic binding in which a requester dynam-
ically discovers, selects, and invokes a web service at run
time. In the standard SOA (Service Oriented Architecture)
paradigm, this is realized by employing service registries
such as UDDI [1] or some form of discovery agencies [4].
Although, theoretically, dynamic binding is possible, it is

3



very difficult in practice to develop commercial applications
without knowing precisely which particular web services or
operations will be invoked [9].

One of the primary objectives of IEIP is to support dy-
namic binding to web services. Our WS-Mediator resolves
the binding in a common layer which can be shared by other
applications and shifts the matching and processing diffi-
culty from each application to IEIP.

2.7 Management of web services

Both service providers and requesters need to manage
web services. Providers use management functions to im-
prove service provision and requesters use management
functions to select the best service dynamically. Service
management in the IEIP manages both web services them-
selves and their execution environment through a set of ca-
pabilities for monitoring, controlling, and reporting service
qualities and service usage [15, 4]. IEIP defines a two-layer
management scheme: enterprise layer and inter-enterprise
layer. The enterprise layer is used to manage and monitor
the provision of web services provided by every enterprise
information system. The inter-enterprise layer is provided
to manage the IEIP mediated web services which are de-
fined by orchestrating a number of enterprise web services,
and are made visible to external users.

2.8 Related work

We briefly survey a number of enabling technologies
that underpin IEIP. The purpose of IEIP, the provision of
a set of unified access interfaces to a variety of underlying
enterprise web services, is not new. There are a number
of similar efforts in the domains of data integration [27]
and EII/ EAI [24]. Considerable research effort has been
devoted to B2B integration [8, 14, 28, 37] which mainly
focuses on interoperable business process modelling. Re-
cently, Kajan [25] defined e-commerce as a third wave of
B2B where ad-hoc integration is to be supported, with the
help of web services. He focuses on the future develop-
ments where ontologies will be used [28] within a media-
tor architecture to match service supply and demand. Simi-
larly, Vetere and Lenzerini [39] advocate the use of ontolo-
gies to enable SOAP message translation between providers
and customers [17]. This vision aligns B2B with the do-
main of web services, where research has been focused on
the enhancements and extensions of web service standards
of description, discovery, and composition. Recent indus-
trial offerings, like IBM’s Enterprise Service Bus (ESB)
[36], share the vision of automated service discovery and
mediation-enabled binding (called ”links”) and propose to
use a separate mediation service which will enable semantic
mappings, without actually specifying how mappings will

be computed. ESB specification reflects the current status
of the semantic web.

Our contribution, the IEIP architecture, enables collabo-
ration between B2B and web services, supported by a web
service mediator. IEIP distinguishes itself from previous
work by: 1) customer-oriented (private) global views that
manage the increasing complexity of interfaces for both
providers and requesters; 2) publishing of requester views
to the potential service providers; 3) focus on the macro
level to create a systematic model of using web services to
integrate information assets rather than on the micro level
to invent protocols and algorithms for producing and con-
suming web services; 4) a component-based architecture
that makes IEIP an open platform in which different mod-
ules, which implement different algorithms, can be plugged
in to acquire different processing capabilities. The core
of IEIP platform depends on its capability to transform
SOAP messages. The component-based architecture makes
it easy to plug in a variety of XML transformation algo-
rithms [10, 11, 13].

3 Web services-IEIP architecture

The aim of the IEIP architecture is to manage distributed
enterprise computing resources (data and business function-
ality) at the inter-enterprise level, and to provide operational
support to a number of commercial applications in order
to simplify the integration of enterprise services. One of
the major functions an IEIP must provide is the reconcil-
iation of the enterprise service heterogeneity. We identify
four levels of heterogeneity of enterprise services: plat-
form, language, syntactic, and semantic levels. Web ser-
vices solve the problems of platform and language hetero-
geneity. They offer greater and more widespread pragmatic
internet-scale interoperability than any previous distributed
technologies such as CORBA, DCOM and RMI. Interoper-
ability is based on messaging/document-oriented comput-
ing rather than distributed object technologies [42]. A web
service is described by an XML document (a WSDL docu-
ment), is designed to process an XML document (a SOAP
message) as input, and produce an XML document as out-
put. A client (service request) is able to discover a web
service by parsing its description schema automatically or
semi-automatically and to interact with a web service by
composing and sending an XML document.

Considerable extensions to the core standards of web ser-
vices have been proposed to resolve the syntactic and se-
mantic heterogeneity. However, none of those extensions
have been widely adopted yet. For the purpose of creat-
ing a practical solution for real world applications, we have
adopted the most popular standards: WSDL for description,
and SOAP for interaction, and have enhanced those with
mediation.

4



3.1 Mediator-oriented SOA

Service

Discovery

Service

Requester

Service

Provider

Service

Mediator

Figure 3. A mediator-oriented SOA architec-
ture, MOSOA

SOA is a very successful solution in both data integration
and data exchange [19, 27, 35]. We extend this paradigm
and propose a mediator-oriented SOA (MOSOA) model to
presenta unified viewor multiple viewsof a specific web
service. We refer to the description of a web service as its
view. As shown in Figure 3, the modification to the stan-
dard SOA model looks trivial, but in fact it resolves the
syntactic and semantic heterogeneity. The key idea is the
separation of the view of a web service, which is defined
and published by its provider, from the view of this web
service visible (for discovery and dynamic binding) to ser-
vice requesters. The objective of using a mediator is sim-
ilar to the adapter (or wrapper) design pattern that enables
a client to access a class in a client-specific way, by trans-
forming the interface of one class into an interface which
is expected by the client [22]. However, the implementa-
tion of such a scheme is different. In the adapter design pat-
tern, the interfaces are often defined by the service provider.
But in the MOSOA model, the mediator defines the re-
quired views. In the IEIP architecture, a mediator uses an
XML-based schema/message/data mapping [13] to trans-
form SOAP messages between the provider view and the
mediator view.

3.1.1 Requester-based view

The first contribution of the IEIP architecture is the intro-
duction of the concept ofrequester-basedview of a web
service. Normally, the view of a web service is defined by
its provider and the requester must use this view precisely
to interact with the web service.

Although web services hide the implementation of a ser-
vice from its requesters, the requesters still have to discover
the view (interface) of the service to invoke. Based on the
current web services infrastructure, major research efforts
have been devoted to the introduction of additional levels of
semantics into the description of web services, and to the

invention of new dynamic searching/matching approaches
to intelligent and automated web service discovery. Most
of previous research contributions have been based on the
views defined by providers.

The most crucial issue in service discovery is to match
service requests to service descriptions, to find the most ap-
propriate service or a list of services. However, the state-of-
the-art of web service discovery is still far from sufficientto
support fully automated dynamic service binding. Dynamic
binding is not a trivial requirement in e-commerce applica-
tions. It is common that a service requester is implemented
before a service provider releases a service.

In the light of such a request-before-service scenario, we
think it is important to supportrequester-based viewsof a
web service. A service requester can either define / register
a view of an expected service to be used in a service media-
tor or acquire a common view of a service from a mediator.
As a result, a service requester can make use of a service
which will be available later by using the mediator to map
its requested view to the actual view of a web service.

3.1.2 Multiple views

The second contribution of IEIP model is the support for
multiple views of a web service, analogous to the multi-
ple interfaces of a class in the object-oriented programming
model [18]. When a service provider publishes/registers
one web service, the pertinent mediator can create multi-
ple views (descriptions) of this web service, based on the
provider’s view and on the requests registered by service
requesters. Of course, a service provider can also publish
multiple views of a web service implementation.

3.1.3 Customer-oriented global views

Because the MOSOA model enables the separation of views
defined by the providers from the views used by the re-
questers, it can define a global view of a number of sibling
web services, or a virtual view of a composite service cre-
ated by orchestrating multiple web services. IEIP develops
the concept of global view further and introduces the con-
cept ofcustomer-oriented global view. As a consequence,
each requester (customer) can acquireits own global view
over a number of selected web services. In a real world ap-
plication, a client often needs to access a number of web ser-
vices which implement the same or similar business func-
tionality but are operated by different providers. Currently,
such a client has to compose a different XML document
for each distinct web service and to handle different XML
documents returned from different web services. By using
the MOSOA model, a mediator maintains a global schema
as the description of a virtual web service representing a
number of local web services. The mappings between the
global schema and each local schema are defined and used

5



to specify the translation of web service requests and re-
sponses. Consequently, a client does not need to compose a
distinct request for each web service. Instead, it poses a re-
quest against the virtual representative web service accord-
ing to its global schema. The mediator will translate this
global request into a local request based on a local schema.
If a web service produces a response, the mediator trans-
lates this local response into a global response which can
be processed by the specified client according to the client’s
global schema.

3.2 Web service schema/view manage-
ment

A view of a web service is a description of its inter-
face and semantics, which is published as an XML doc-
ument [4]. We refer to such a document as the web ser-
vice schema (WSS). In the MOSOA model a web service
can be described by one or more schemas: one provider-
defined schema, and, possibly, several mediated schemas
created and managed by the mediators. One or several me-
diators then constitute a mediated web service. The core of
web services mediation is the management of WSSs: (1)
creation of mediated schemas; 2) creation of mappings be-
tween a mediated schema and a local schema.

From the mediator’s perspective there are two ways of
creating such a mediated schema: push and pull. The first
way, push, defines a mediated schema and pushes this de-
scription to web service providers or registries to search for
similar web services. A provider can use this (pushed) me-
diated schema as a reference to develop its own web service.
It is not mandatory that a provider must implement its web
service exactly as the mediated schema. Instead, it allows
the service provider to specify mappings between its own
schema and the mediated schema. And the mappings can
be implemented either at the mediator-side or at the local
service-side. The second way, pull, requests descriptions
from web service providers or service registries and classi-
fies web services into categories or clusters using similarity
searching [12]. After a number of sibling services are iden-
tified, schema matching techniques can be employed to gen-
erate a mediated schema and related mappings. The push
method is more appropriate for application startup scenar-
ios in which few web services exist, while the pull method
is more appropriate for scenarios in which a great number
of web services have been developed and are running. In
the real world, a hybrid approach would be employed. A
mediator initiates itself by searching and pulling schemas
of web services to construct a mediated schema to serve a
multitude of clients. By learning the requests issued by dif-
ferent clients to a global schema, the mediator is able to
adapt to serve clients better and pushes this global schema
to service providers who offer their web services via this

Local
Schema1

Local
Schema3

Local
Schema2

Services
Search

Classification

Mediated
Schema

Local
Mappings1

Local
Mappings2

Local
Mappings3

Feedback

&

Explanation

Match

Patterns

Figure 4. Schema matching and mapping

mediated schema. Once the mediated schema is defined,
various approaches can be combined to produce mappings
between the mediated schema and each local schema. The
overall process of mapping construction is summarised in
Figure 4.

Independently of the concrete schema description lan-
guage, a minimal description of a web service is abstracted
asWSS = (OP, IOP,OOP), where OP is a set of oper-
ations defined by web services, IOP is the set of input mes-
sages (requests), and OOP is the set of output messages (re-
sponses). Consequently, web service schema matching and
mapping can be defined asWSSM = (G,L,GL,LG),
where G is a global schema, L is the set of local schemas,
GL are the mappings from the global schema to local
schemas, and LG are the mappings from the local schemas
to the global schema.

The primitive elements in a web service schema which
are meaningful in the context of schema matching are
web service operations. Since web service operations can
be grouped into different types of web services, a global
schema may have different matching levels: operation-
level, service-level (a service consists of multiple opera-
tions), and process-level (a process consists of multiple ser-
vices).

3.3 Mediated web service model

A mediated web service provides virtual interfaces to a
number of web services. As shown in Figure 5, a service
requester does not need to write specific custom code to
handle each distinct local web service. A client sends a
web service request composed according to the mediated

6



Mediated Interface Manager

SOAP Message Driver

Service Choreography

Schema Mediator

Message Translator

Sec

urity

Tran

sacti

ons

Requester1

IG OG

Service1

Implementation

Service2

Implementation

Local

Interface1

Local

Interface2

IL1 IL2 OL
2OL

1

Figure 5. Mediation for Web Services

schema. This request, however, is not processed directly by
a local web service. The mediator will translate this global
(mediated) request into the specified local request(s). Sim-
ilarly, a local web service produces a response document
which has to be translated by the mediator for the service
requester.

When a mediator receives a service request from a client,
the first task is to determine and select local web services
to process this request. Service selection can be specified
either explicitly by the client in the request or implicitly,
according to the constraints specified by the client. A ser-
vice request can be served by multiple services, for exam-
ple, to retrieve flight information from different airline in-
formation services. When local services are selected, the
mediator rewrites the original incoming request for each se-
lected local service using global to local mappings (GL).
In Figure 5, an incoming request IG is translated into two
local requests, IL

1 and IL2 , which are delivered to local web
services 1 and 2. Local web services process the incoming
requests, IL1 and IL2 , and produce response documents, OL

1

and OL
2 . These response documents are sent to the medi-

ator. The mediator can either merge the two documents or
consolidate them (to remove duplicates), and transforms the
consolidated document into the global response document
OG.

Requester

WS-Mediator

WS1 WS2 WS3 WS4

Static

binding

Dynamic

binding

Figure 6. Asynchronous dynamic binding

3.4 Asynchronous dynamic binding

One primary objective of the IEIP is to implement the dy-
namic binding mechanism. Instead of implementing dy-
namic binding directly at the requester side, the IEIP uses
a mediated web service to implement dynamic binding. As
shown in Figure 6, the IEIP supports dynamic binding in
an asynchronous manner. The requester binds to a pertinent
mediated web service statically. And the web service me-
diator inside a mediated web service binds to a number of
local web services dynamically. The key idea is to separate
the binding of a requester to a mediated web service from
the binding of a mediated web service to a number of local
web services.

3.5 Web services management

IEIP employs a light-weight management scheme to
monitor the underlying enterprise web services, based on
a message interception mechanism, which intercepts the
SOAP message and records it into a log database for anal-
ysis. The implementation of IEIP management is based on
the web services conformance testing tools developed by
the WS-I [6]. At this stage, the IEIP management facility
has two tasks: 1) to check the availability of every enter-
prise web service; 2) to conduct a statistical analysis of the
usage of every web service by parsing the message log.

4 IPARK: proof of IEIP

We now outline the implementation of our prototype
iPARK, an application providing European-wide park-
ing services by integrating a variety of different parking
providers, based on the IEIP architecture.

4.1 Motivation: parking service integra-
tion

In most European cities parking spaces are very limited and
the physical distribution of car parks is often unrelated to

7



Parking Consumers,

Call Centre, Airline Booking System

B2B B2C B2B B2C

Information

Service

Reservation 

Service

iPARK core

Information

Service Integration

Reservation 

Service Integration

B2B B2BB2C B2C

Parking providers: 

personal, companies

Figure 7. iPARK service delivery

the requirements of the public. The objective of develop-
ing iPARK is to optimize the usage of parking spaces and
reduce the parking search and the resulting traffic. Park-
ing operators increasingly offer online information systems
that allow the customers to find, reserve, and access parking
spaces. In order to optimize the usage of these information
systems, the operators have to implement their online ser-
vices in such a way that any potential client (a human user
or a software agent) can find and access the desired service
flexibly via various network-enabled devices. Parking op-
erators want their services to reach as many customers as
possible.

However, due to the intrinsic heterogeneity hidden in dif-
ferent parking operators, end users face many information
silos: each operator develops its own information system
independently and thus often serves the customers in a way
distinct from others. While these services might be con-
sumed in a limited way by human users who crawl through
the web to find the access point of a desired service from a
multitude of distinct web pages, it is very difficult to access
these diverse services from other applications (e.g. hotels,
restaurants, festival events) which represent a large number
of indirect users. An undesirable consequence is that system
heterogeneity hinders potential users from reaching parking
space providers who want to deliver their services to more
customers by building online services.

Another critical issue we faced is the order in which the
relevant internet system components are developed. Our ap-
plication and the parking service integration framework had
to be developed first. Many parking operators will develop
new or update existing local parking services later. Thus

we need to be able to integrate services which do not exist
yet. We started the development of an application aimed at
delivering European-wide parking services in the EU IST
project e-Parking, and followed in the Swiss CTI project
PORAS. It has been well recognized in both projects that
iPARK will benefit public transportation, city administra-
tion, drivers, and parking operators, by building a pool of
parking spaces and integrating services from all categories
of parking operators. The long-term objective of iPARK is
twofold. It aims to establish a nation-wide (or European-
wide) e-Commerce application serving drivers directly or
indirectly to find and reserve parking spaces. It also allows
businesses to offer their services more flexibly to a larger
number of customers. Such an application needs to be based
on a service-oriented B2B collaboration platform and capa-
ble of interconnecting a large number of parking services
provided by a variety of operators.

As shown in Figure 7, iPARK provides unified parking
services to end users, based on both B2C (to end users di-
rectly) and B2B (to end users via another application, e.g.
a theatre ticketing system). On the other hand, iPARK in-
tegrates local parking services from a variety of operators
also by using both B2B (for parking services companies)
and B2C (for personal parking providers).

4.2 Database web services

iPARK is based on a web service-oriented N-tier archi-
tecture. It consists of four tiers: presentation, businessser-
vice, data service, and data. An important feature of iPARK
is the creation of a data service tier which is used to provide
the unification of data and algorithms. With the introduc-
tion of this tier, we achieved three goals: 1) a clean data tier
where the code and data are still separated; 2) a meditation
tier where the code and data are combined by wrapping ac-
cess to the underlying database with a set of web services;
3) separation of the underlying database schema and sev-
eral public virtual schemas defined in terms of web services.
Leveraging web services to encapsulate data manipulations,
iPARK achieves high interoperability and scalability. Be-
cause the actual business logic accesses the data via a set
of web services, loose coupling between the database and
business logic is realized. Therefore, privacy is protected,
because the underlying database schema can be hidden from
the (external) business logic.

Complementing traditional data integration, the use of
web services to wrap a database facilitates inter-enterprise
data integration. Based on current technologies, we believe,
the best way to connect an enterprise database to internet-
based commercial applications is to wrap it as a set of web
services. Such a set defines public views of the underly-
ing database. An enterprise can define different wrapping
policies and then expose different sets of web services to

8



different partners.

4.3 iPARK IEIP implementation

Mediated Interface

Web Service MediatorRegistry

WS1 WS2 WS3

Figure 8. One to many mediation

Mediated 

Interface1

Web Service MediatorRegistry

Web

Service

Mediated 

Interface2

Mediated 

Interface3

Figure 9. Many to one mediation

iPARK IEIP implements two types of mediators. The first
type is a one-to-many mediator, see Figure 8, in which a
mediated web service provides one mediated interface to a
number of web services. In the second service type, see
Figure 9, a mediated web service provides multiple inter-
faces to access the same web service. Based on these two
types, complex mediated web services can be created eas-
ily by using web services orchestration and choreography.
For example, iPARK generic reservation service uses the
one-to-many mediation pattern to implement integrated ac-
cess to all registered local reservation services providedby
different partners. In addition, it uses the many-to-one me-
diation pattern to provide two different mediated interfaces
for iPARK service requesters.

5 SOAP mediation

The mediator uses Intersystems Caché database
(www.intersystems.com), and could as well be supported by

Apache/Axis. In iPARK clients reserve parking spaces and
providers offer reservation services. Clients 1 sends the
following simplified message to the mediator.
<SOAP-ENV:Body>

<Reservation xmlns="http://serve:9000/ipark">

<DriverID>0986432</DriverID>

<Start>2006-07-01 9:00</Start>

<ReservedTime>120</ReservedTime>

</Reservation>

</SOAP-ENV:Body>

The mediator executes the queries used in message trans-
lation to convert requests received from the clients to the
request format expected by the providers. In this case, the
mediator transforms the message and forwards it to two
providers. Provider 1 receives:
<SOAP-ENV:Body>

<Reserve xmlns="http://vpark:9000/ipark">

<DriverName>Suo Cong</DriverName>

<Billing>Wallisstr. 473, Zurich</Billing>

<StartDate>2006-07-01</StartDate>

<StartTime>9:00</StartTime>

<EndDate>2006-07-01</EndDate>

<EndTime>11:00</EndTime>

<NumberOfSpace>1</NumberOfSpace>

</Reserve>

</SOAP-ENV:Body>

and Provider 2 is sent the following.
<SOAP-ENV:Body>

<ResSpace xmlns="http://vpark:9000/ipark">

<IPARKUserID>suocong</IPARKUserID>

<StartDate>2006-07-01</StartDate>

<EntranceTime>9:00</EntranceTime>

<RequestedTime>120</RequestedTime>

</ResSpace>

</SOAP-ENV:Body>

When a response is produced by any of the providers, the
mediator transforms it to match the client’s global view
and routes the reply back to the client. In the mediated
scenario a client uses one global view of the available web
services, and can take advantage of services offered by
several providers. In fact, iPARK has a registry of several
requestor views, and several provider views, and executes
m:n mappingsbetween clients and providers. The iPARK
database supports the translation of SOAP mappings which
are expressed as XML queries.

6 Discussion and conclusions

We presented a novel platform for loosely-coupled inte-
gration of enterprise services at inter-enterprise level,IEIP,
which uses a mediator-oriented SOA model. The key idea
of our work was to separate the view of a web service, as
defined by its provider, from the views created by a medi-

9



ator, and used by a service consumer. Based on the medi-
ated views of a web service, requesters are freed from direct
binding to the underlying enterprise web services, and can
use the web service infrastructure more flexibly.

The implementation of mediated web services is based
on the techniques of schema mapping and data exchange.
Most research in this area has been devoted to relational
schema mapping and data exchange [17, 19, 34, 35]. Re-
search on XML-based schema mapping and data exchange
[10, 11, 13] is still a hot area, and our work extends this
paradigm by making the issue of mediation explicit. Our
main interest lies in exploiting XML techniques to imple-
ment the transformation of SOAP request/response mes-
sages between (mediated) web services. Our current IEIP
implementation only supports limited semi-automated gen-
eration of mediated schemas and schema mappings. Our
solution provides some of the functionality envisaged for
ESB [36], but focuses on the tasks and techniques used by
a mediator, which lie outside ESB focus.

In the future we will work on improving the mechanisms
used in schema mediation. We require more flexible support
for authentication and security, and ad-hoc service compo-
sition. The long-term aim is to support web service usage
scenarios which offer flexibility, fit-for-purpose, as wellas
quality assurance. Adaptation of mappings to environmen-
tal change is another concern that needs to be addressed.
ACKNOWLEDGEMENTS: This work was supported by the
Swiss CTI/KTI Project PORAS 6704.2 ENS-ES and by an
EU Marie-Curie Fellowship (E.H.). We thank Moira Norrie
for her valuable comments.

References

[1] UDDI, 2002. www.uddi.org.
[2] BPEL v. 1.1, 2003. www-128.ibm.com/developerworks/

library/specification/wsbpel/.
[3] SOAP, 2003. www.w3.org/2000/xp/Group.
[4] Web Services Architecture, 2004. www.w3.org/TR/ws-arch.
[5] WS Choreography, 2005. www.w3.org/2002/ws/chor.
[6] Web Services Interoperability Org., 2006. www.ws-i.org.
[7] WS Description Language, 2006. www.w3.org/2002/ws/

desc.
[8] S. Aissi et al. E-Business Process Modeling: The next big

step.IEEE Computer, 35(5), 2002.
[9] G. Alonso et al.Web Services: Concepts, Architectures and

Applications. Springer, 2004.
[10] S. Amer-Yahia and Y. Kotidis. A Web-Services Architecture

for Efficient XML Data Exchange. InICDE, 2004.
[11] M. Arenas and L. Libkin. XML Data Exchange: Consis-

tency and Query Answering. InPODS, 2005.
[12] T. Berners-Lee. Roadmap for Web Services. www.w3.org/

DesignIssues/WebServices.html.
[13] A. Boukottaya et al. Automating XML documents Trans-

formations: A conceptual modeling based approach. In1st
Asian-Pacific Conf. on Concept. Model., 2004.

[14] C. Bussler. B2B Integration Technology Architecture.In
WECWIS, 2002.

[15] F. Casati et al. Business-Oriented Management of Web Ser-
vices.CACM, 46(10), 2003.

[16] F. Curbera et al. The Next Step in Web Services.CACM,
46(10), 2003.

[17] R. Dhamankar et al. iMAP: Discovering Complex Semantic
Matches between Database Schemas. InSIGMOD, 2004.

[18] B. Eckel. Thinking in Java. Prentice Hall, 1998.
[19] R. Fagin et al. Data Exchange: Getting to the Core.TODS,

30(1), 2005.
[20] D. Fensel and C. Bussler. The Web Service Modeling

Framework WSMF. Electronic Commerce Research and
Applications, 1(2), 2002.

[21] P. Fremantle et al. Enterprise Services.CACM, 45(10),
2002.

[22] E. Gamma et al.Design Patterns. Addison-Wesley, 1995.
[23] J. Gray and M. Compton. A Call to ARMS.ACM QUEUE,

3(3), 2005.
[24] A. Halevy et al. Enterprise Information Integration: Suc-

cesses, Challenges, and Controversies. InSIGMOD, 2005.
[25] E. Kajan. The maturity of open systems for b2b.SIGecom

Exch., 5(2), 2004.
[26] J. Lee et al. Enterprise Integration with ERP and EAI.

CACM, 46(2), 2003.
[27] M. Lenzerini. Data integration: A theoretical perspective.

In PODS, 2002.
[28] B. Medjahed et al. Business-to-business interactions: issues

and enabling technologies.VLDB Journal, 12(1), 2003.
[29] B. Medjahed et al. Infrastructure for E-Government Web

Services.IEEE Internet Computing, 7(1), 2003.
[30] OWL-S. Semantic Markup for Web Services, 2004.

www.daml.org/services/owl-s/1.1B/owl-s.pdf.
[31] M. Paolucci et al. Semantic Matching of Web Services Ca-

pabilities. InISWC, 2002.
[32] C. Peltz. Web Services Orchestration and Choreography.

IEEE Computer, 36(10), 2003.
[33] C. Petrie and C. Bussler. Service Agents and Virtual Enter-

prises: A Survey.IEEE Internet Computing, 7(4), 2003.
[34] L. Popa et al. Translating Web Data. InVLDB, 2002.
[35] E. Rahm and P. Bernstein. A survey of approaches to auto-

matic schema matching.VLDB Journal, 10(4), 2001.
[36] M.-T. Schmidt, B. Hutchison, P. Lambros, and R. Phippen.

The Enterprise Service Bus: Making service-oriented archi-
tecture real.IBM Systems Journal, 44(4), 2005.

[37] S. Shim et al. Business-to-Business E-Commerce Frame-
works. IEEE Computer, 33(10), 2000.

[38] K. Sycara et al. Automated Discovery, Interaction and Com-
position of Semantic Web Services.Journal of Web Seman-
tics, 1(1), 2003.

[39] G. Vetere and M. Lenzerini. Models for semantic interoper-
ability in service-oriented architectures.IBM Systems Jour-
nal, 44(4), 2005.

[40] S. Vinoski. Web Services Interaction Models, Part 1.IEEE
Internet Computing, 6(3), 2002.

[41] S. Vinoski. Web Services Interaction Modes, Part 2.IEEE
Internet Computing, 6(4), 2002.

[42] W. Vogels. Web Services Are Not Distributed Objects.IEEE
Internet Computing, 7(6), 2003.

10


