Binary

From Compsci1

(Difference between revisions)
(Rules of Binary Addition)
 
(2 intermediate revisions not shown)
Line 10: Line 10:
1 + 1 = 0, and carry 1 to the next more significant bit  
1 + 1 = 0, and carry 1 to the next more significant bit  
 +
For example,
For example,
00011010 + 00001100 = 00100110  
00011010 + 00001100 = 00100110  
   
   
-
       1  1   carries  
+
       1  1                     carries  
-
  0  0  0  1  1  0  1  0    =    26(base 10)  
+
  0  0  0  1  1  0  1  0    =    26<sub>(base 10)</sub>
-
  0  0  0  0  1  1  0  0    =    12(base 10)  
+
  0  0  0  0  1  1  0  0    =    12<sub>(base 10) </sub>
+
+
-
<nowiki>--------------------------------------------------------------------------------</nowiki>
+
--------------------------------------------------------------------------------
      
      
-
  0  0  1  0  0  1  1  0    =    38(base 10)  
+
  0  0  1  0  0  1  1  0    =    38<sub>(base 10) </sub>
   
   
Line 31: Line 32:
00010011 + 00111110 = 01010001   
00010011 + 00111110 = 01010001   
-
     1  1  1  1  1   carries  
+
     1  1  1  1  1               carries  
-
  0  0  0  1  0  0  1  1    =    19(base 10)  
+
  0  0  0  1  0  0  1  1    =    19<sub>(base 10) </sub>
-
  0  0  1  1  1  1  1  0    =    62(base 10)  
+
  0  0  1  1  1  1  1  0    =    62<sub>(base 10) </sub>
 +
+
-
+ <nowiki>----------------------------------------------------------------------</nowiki>
+
----------------------------------------------------------------------
    
    
-
   0  1  0  1  0  0  0  1    =    81(base 10)  
+
   0  1  0  1  0  0  0  1    =    81<sub>(base 10)</sub>
-
 
+
==Rules of Binary Subtraction==
==Rules of Binary Subtraction==
0 - 0 = 0  
0 - 0 = 0  
 +
0 - 1 = 1, and borrow 1 from the next more significant bit  
0 - 1 = 1, and borrow 1 from the next more significant bit  
 +
1 - 0 = 1  
1 - 0 = 1  
 +
1 - 1 = 0  
1 - 1 = 0  
 +
For example,
For example,
00100101 - 00010001 = 00010100  
00100101 - 00010001 = 00010100  
-
                        0   borrows  
+
      0                       borrows  
-
  0  0  <strike>1</strike> <sup>1</sup>0  0  1  0  1    =    37(base 10)  
+
  0  0  <strike>1</strike> <sup>1</sup>0  0  1  0  1    =    37<sub>(base 10) </sub>
-
0  0  0  1  0  0  0  1    =    17(base 10)
+
-
--------------------------------------------------------------------------------
+
0  0  0  1  0  0  0  1    =    17<sub>(base 10)</sub>
-
  0  0  0  1  0  1  0  0    =    20(base 10)  
+
 
 +
-  
 +
 
 +
-------------------------------------------------------------
 +
 
 +
  0  0  0  1  0  1  0  0    =    20<sub>(base 10)</sub>
   
   
    
    
00110011 - 00010110 = 00011101   
00110011 - 00010110 = 00011101   
-
            0 10 1   borrows  
+
      0 <sup>1</sup>0  1                   borrows  
-
  0  0  1  1  0 10 1  1    =    51(base 10)  
+
 
-
- 0  0  0  1  0  1  1  0    =    22(base 10)  
+
0  0  <strike>1  1  0 </strike><sup>1</sup>0 1  1    =    51<sub>(base 10)</sub>
 +
 +
0  0  0  1  0  1  1  0    =    22<sub>(base 10)</sub>
 +
 
 +
-
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
      
      
-
  0  0  0  1  1  1  0  1    =    29(base 10)  
+
0  0  0  1  1  1  0  1    =    29<sub>(base 10)</sub>

Current revision as of 20:31, 1 October 2006

a good resource on Binary

Rules of Binary Addition

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0, and carry 1 to the next more significant bit

For example,

00011010 + 00001100 = 00100110

      1  1                     carries 
0  0  0  1  1  0  1  0    =    26(base 10) 
0  0  0  0  1  1  0  0    =    12(base 10) 

+



0  0  1  0  0  1  1  0    =    38(base 10) 


00010011 + 00111110 = 01010001

   1  1  1  1  1               carries 
0  0  0  1  0  0  1  1    =    19(base 10) 
0  0  1  1  1  1  1  0    =    62(base 10) 

+



 0  1  0  1  0  0  0  1    =    81(base 10)

Rules of Binary Subtraction

0 - 0 = 0

0 - 1 = 1, and borrow 1 from the next more significant bit

1 - 0 = 1

1 - 1 = 0

For example,

00100101 - 00010001 = 00010100

      0                        borrows 
0  0  1 10  0  1  0  1    =    37(base 10) 
0  0  0  1  0  0  0  1    =    17(base 10) 

-


0  0  0  1  0  1  0  0    =    20(base 10) 

 

00110011 - 00010110 = 00011101

      0 10  1                   borrows 
0  0  1  1  0 10  1  1    =    51(base 10)

0  0  0  1  0  1  1  0    =    22(base 10) 

-


0  0  0  1  1  1  0  1    =    29(base 10)




Notes

Binary Number System

System Digits: 0 and 1

Bit (short for binary digit): A single binary digit

LSB (least significant bit): The rightmost bit

MSB (most significant bit): The leftmost bit

Upper Byte (or nybble): The right-hand byte (or nybble) of a pair

Lower Byte (or nybble): The left-hand byte (or nybble) of a pair

Binary Equivalents

1 Nybble (or nibble) = 4 bits

1 Byte = 2 nybbles = 8 bits

1 Kilobyte (KB) = 1024 bytes

1 Megabyte (MB) = 1024 kilobytes = 1,048,576 bytes

1 Gigabyte (GB) = 1024 megabytes = 1,073,741,824 bytes

Personal tools
Handy Pages