Fourier analyzer

From Ccpi

(Difference between revisions)
m (add a bit)
(add pic)
Line 1: Line 1:
 +
[[Image:Fourier_analyzer,_Koenig.jpg|right|thumb|250px|Fourier analyzer, designed by Rudolph Koenig, c. 1889]]
The '''Fourier analyzer''', which was called by Rudolph Koenig an '''Analyzer of the timbre of sounds''', is a large device for qualitatively comparing the Fourier components of a sound. Fourteen large [[Helmholtz resonator]]s of varying sizes are connected via rubber tubing to individual [[manometric flame]]s, which are reflected in a hand-driven rotating mirror for viewing. The resonators are individually adjusted to produce a fundamental tone and its harmonics for analysis. The taller a flame is, the larger its corresponding Fourier component. The manometric flames are stabilized with mica strips, which protect against unwanted wind and air currents.
The '''Fourier analyzer''', which was called by Rudolph Koenig an '''Analyzer of the timbre of sounds''', is a large device for qualitatively comparing the Fourier components of a sound. Fourteen large [[Helmholtz resonator]]s of varying sizes are connected via rubber tubing to individual [[manometric flame]]s, which are reflected in a hand-driven rotating mirror for viewing. The resonators are individually adjusted to produce a fundamental tone and its harmonics for analysis. The taller a flame is, the larger its corresponding Fourier component. The manometric flames are stabilized with mica strips, which protect against unwanted wind and air currents.

Revision as of 05:22, 12 April 2006

Fourier analyzer, designed by Rudolph Koenig, c. 1889

The Fourier analyzer, which was called by Rudolph Koenig an Analyzer of the timbre of sounds, is a large device for qualitatively comparing the Fourier components of a sound. Fourteen large Helmholtz resonators of varying sizes are connected via rubber tubing to individual manometric flames, which are reflected in a hand-driven rotating mirror for viewing. The resonators are individually adjusted to produce a fundamental tone and its harmonics for analysis. The taller a flame is, the larger its corresponding Fourier component. The manometric flames are stabilized with mica strips, which protect against unwanted wind and air currents.

Personal tools