Vector Extreme Value Theorem
From Vectorcalcumb
Revision as of 19:01, 11 February 2006 by 71.192.72.43 (Talk)
Vector Extreme Value Theorem
<m>F: \\bbR^n \\right \\bbR^m</m> <m>F</m> is continuous, <m>A \\subset \\bbR^n</m> compact subset <m>\\right F(A)</m> is compact [i.e. F is bounded and attains its 'extreme' values]
And apparently, there's no analogue to the Intermediate Value Theorem in Vector Calculus.
And then I have these scribblings:
<m> F(A)\\subset \\bigcup{i \\in I}{}{u_i} </m>
<m> A \\subset \\bigcup{i \\in I}{}{F^{-1}u_i} </m>
<m> A \\subset \\bigcup{k=1}{n}{F^{-1}u_i_k} \\doubleright F(A) \\subset \\bigcup{k=1}{n}{u_i_k}</m>