Topical Overview
From Vectorcalcumb
(Difference between revisions)
Line 34: | Line 34: | ||
*[[Differential Forms]] | *[[Differential Forms]] | ||
*[[Integrals on Manifolds]] | *[[Integrals on Manifolds]] | ||
+ | <m>int{partial M}{} omega = int{M}{} d omega</m> |
Current revision as of 03:19, 9 February 2006
Contents |
[edit] Vector Functions
<m>F : \\bbR^m \\right \\bbR^n</m>
- Things more complicated than Linear Transformations
- Structure of <m> \\\\bbR^n </m>
- Calculus of Vector Functions
- Limits<m>\\right</m>Continuity<m>\\right</m>Differentiability
[edit] Vector Fields
<m>F : \\bbR^n \\right \\bbR^n</m>
- Gradient Fields
- <m>F : (\\gradient f)(p) \\in \\bbR^n</m>
- Maxima & Minima
- Free
- Constrained
- Lagrange Multiplier
- divergance, circulation
- div
- curl
[edit] Integrals
- [Multiple Integrals]
- [Line Integrals]
- [Surface Integrals]
[edit] Integral Vector Calculus
- [Stoke's Theorem]
- [Green's Theorem]
- [Gauss's Theorem]
[edit] Manifolds
<m>int{partial M}{} omega = int{M}{} d omega</m>