Topical Overview

From Vectorcalcumb

(Difference between revisions)
 
(7 intermediate revisions not shown)
Line 1: Line 1:
=[[Vector Functions]]=
=[[Vector Functions]]=
-
<m>F : R^m \\arrow \\; R^n</m>
+
<m>F : \\bbR^m \\right \\bbR^n</m>
 +
*Things more complicated than Linear Transformations
 +
*Structure of <m> \\\\bbR^n </m>
 +
**[[Metric Spaces]]
 +
**[[Topology]]
 +
*Calculus of Vector Functions
 +
**[[Limits]]<m>\\right</m>[[Continuity]]<m>\\right</m>[[Differentiability]]
=[[Vector Fields]]=
=[[Vector Fields]]=
 +
<m>F : \\bbR^n \\right \\bbR^n</m>
 +
*Gradient Fields
 +
*<m>F : (\\gradient f)(p) \\in \\bbR^n</m>
 +
*Maxima & Minima
 +
**Free
 +
**Constrained
 +
*Lagrange Multiplier
 +
*divergance, circulation
 +
**div
 +
**curl
 +
=[[Integrals]]=
=[[Integrals]]=
 +
*[Multiple Integrals]
 +
*[Line Integrals]
 +
*[Surface Integrals]
 +
=[[Integral Vector Calculus]]=
=[[Integral Vector Calculus]]=
 +
*[Stoke's Theorem]
 +
**[Green's Theorem]
 +
*[Gauss's Theorem]
 +
=[[Manifolds]]=
=[[Manifolds]]=
 +
*[[Parameterized Manifolds]]
 +
*[[Differential Forms]]
 +
*[[Integrals on Manifolds]]
 +
<m>int{partial M}{} omega = int{M}{} d omega</m>

Current revision as of 03:19, 9 February 2006

Contents

[edit] Vector Functions

<m>F : \\bbR^m \\right \\bbR^n</m>

[edit] Vector Fields

<m>F : \\bbR^n \\right \\bbR^n</m>

  • Gradient Fields
  • <m>F : (\\gradient f)(p) \\in \\bbR^n</m>
  • Maxima & Minima
    • Free
    • Constrained
  • Lagrange Multiplier
  • divergance, circulation
    • div
    • curl

[edit] Integrals

  • [Multiple Integrals]
  • [Line Integrals]
  • [Surface Integrals]

[edit] Integral Vector Calculus

  • [Stoke's Theorem]
    • [Green's Theorem]
  • [Gauss's Theorem]

[edit] Manifolds

<m>int{partial M}{} omega = int{M}{} d omega</m>

Personal tools