Small talk, then ask her out

From Thread 1

(Difference between revisions)
m
Line 1: Line 1:
-
You approach the blonde and chat with her a bit, admiring her makeup and the hot nightwear she's browsing through.  She's very friendly and you know you're sure to score with her.  You're ready to ask her out.
+
[[Image:Mandel zoom 00 mandelbrot set.jpg|322px|right|thumb|Initial image of a Mandelbrot set zoom sequence with continuously coloured environment]]<!-- The sequence \\, is inserted in MATH items to ensure consistency of representation
 +
  -- Please don't remove it -->
 +
The '''Mandelbrot set''' is a set of [[Point (geometry)|points]] in the [[complex plane]] that forms a [[fractal]]. Mathematically, the Mandelbrot set can be defined as the set of complex ''c''-values for which the orbit of 0 under iteration of the [[complex quadratic polynomial]] ''x''<sup>2</sup> + ''c'' remains bounded.
-
"I know this great little Chinese restaurant," she remarks. "Would you like to have dinner with me tonight?"
+
Eg. c = 1 gives the sequence 0, 1, 2, 5, 26… which tends to infinity. As this sequence is unbounded, 1 is not an element of the Mandelbrot set.
-
Do you:
+
On the other hand, c = i gives the sequence 0, i, (-1 + i), –i, (-1 + i), -i… which is bounded, and so it belongs to the Mandelbrot set.
-
*[[Go to dinner with her]]
+
 
-
*[[Tell her you want to see her in that crotchless teddy first]]
+
When computed and graphed on the complex plane, the Mandelbrot Set is seen to have an elaborate boundary, which does not simplify at any given magnification. This qualifies it as a fractal.
-
*[[Kiss her here and now]]
+
 
-
{{SexRompStatus|Location=''[[The Clothing Department]]''|Health=Horny|MP=0|Level=1}}
+
The Mandelbrot set has become popular outside [[mathematics]] both for its aesthetic appeal and for being a complicated structure arising from a simple definition. [[Benoît Mandelbrot]] and others worked hard to communicate this [[Areas of mathematics|area of mathematics]] to the public.
-
[[Category: Smutty Sex Romp]]
+

Revision as of 23:47, 17 December 2007

File:Mandel zoom 00 mandelbrot set.jpg
Initial image of a Mandelbrot set zoom sequence with continuously coloured environment

The Mandelbrot set is a set of points in the complex plane that forms a fractal. Mathematically, the Mandelbrot set can be defined as the set of complex c-values for which the orbit of 0 under iteration of the complex quadratic polynomial x2 + c remains bounded.

Eg. c = 1 gives the sequence 0, 1, 2, 5, 26… which tends to infinity. As this sequence is unbounded, 1 is not an element of the Mandelbrot set.

On the other hand, c = i gives the sequence 0, i, (-1 + i), –i, (-1 + i), -i… which is bounded, and so it belongs to the Mandelbrot set.

When computed and graphed on the complex plane, the Mandelbrot Set is seen to have an elaborate boundary, which does not simplify at any given magnification. This qualifies it as a fractal.

The Mandelbrot set has become popular outside mathematics both for its aesthetic appeal and for being a complicated structure arising from a simple definition. Benoît Mandelbrot and others worked hard to communicate this area of mathematics to the public.

Personal tools